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ABSTRACT 

We present a theory of excitation of simple atoms by slow moving 

massive monopoles. Previously presented results for a monopole of Dirac 

strength on hydrogen and helium are reviewed. The hydrogen theory is 

extended to include arbitrary integral multiples of the Dirac pole strength. 

The excitation of helium by double strength poles and by dyons is also 

discussed. It is concluded that a helium proportional counter is a reliable 

and effective detector for monopoles of arbitrary strength, and for nega- 

tively charged dyons. 
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I. INTRODUCTION 

As discussed by Drell et al.1 (hereafter referred to as DKMPR), 

massive Dirac monopoles have a large effect on atomic energy levels, and 

can cause degeneracy or near degeneracy between the ground state and 

excited states of the atom. This phenomenon leads to greatly enhanced 

excitation cross sections for slow moving monopoles. For simple atoms the 

effect can be reliably calculated, thus providing the possibility of reliable 

low p = v/c detection. What is believed to be a quite accurate calculation 

has been carried out for a minimum strength monopole in hydrogen, and a 

calculation of uncertain accuracy has been carried out for such a monopole 

in helium. 

In the following we shall review the method and results of DKMPR, 

discuss some further investigation of the hydrogen case which includes an 

extension to monopoles of arbitrary mutiples of the Dirac charge, and 

describe work in progress which should lead to comparably accurate predic- -~ 

tions for helium. We shall also discuss the interaction of double strength 

poles and dyons with helium. Finally, we shall conclude with a few com- 

ments about the potential utility of other noble gas atoms as monopole 

detectors. 

II. J’HE BASIC MECHANISM AND COMPUTATIONAL STRATEGY 

In the following we treat the monopole as infinitely massive, and, 

until we discuss recoil effects, the nucleus as infinitely massive. We use .- 
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non -relativistic theory and assume the normal Dir ac magnetic moment for 

---the electrons. The Hamiltonian for an atom may then be written 
_ - 

Z 

H= c 

(Pi - A$ e 

i=l 2m - 2m Zi 0 l& tU(rl...rZ) 

In (2. 1) we have 

g r^. 
B 1 

=- 
-yi r2 

i 

A 
(fl-cosei) 

wi = g ii r-sin 8 
1 i 

The two signs in (2. 3) refer to alternate gauges 
2 

and (r 
i 

cal coordinates for.the i th electron relative to the pole. 

sents the electrostatic interaction between the electrons 

electrons and nucleus. 

The angular momentum operator for this system may be written 3 

-~ J = 

(2. 1) 

(2.2) 

(2. 3) 

, 9 it d,) are spheri- 

Finally, U repre- 

and between the 

(2.4) 

where q = eg must be an integer or half integer. The term ,ri x (pi - e&i) 

= m,rixf. 
1 

is the mechanical orbital angular momentum while -q r^ 
i 

repre- 

sents the angular momentum associated with the electron’s electrostatic field 

crossed with magnetic field of the pole. 
4 

Because of the coordinates we have used-in the above equations, and 

also because the pole is assumed to be much more massive than the atom, 
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I . 

it is convenient to work in a reference frame in which the pole is at rest. 

-F- If the atom impinges on the monopole with zero impact parameter so that the 
_ - 

monopole passes through it (i. e. the nuclear coordinate z N goes from - QI 

to -Ia) J is conserved. 
Z 

Since, however, the z component of field angular 

momentum changes from tqZ to -qZ in this process, the mechanical angu- 

lar momentum and spin, which we identify with the atomic angular momentum 

when the atom is outside the range of the pole’s magnetic field, must change 

so as to compensate. Thus Jz (atom) increases by 2qZ as a result of the 

collision. Let us suppose that the incident atom has atomic spin zero, that 

is to say the atomic ground state has zero angular momentum (as would be 

the case for a noble gas atom). Then no matter how slowly the collision takee 

place, after it is over the atom must be in a state of angular momentum 

greater or equal (typically equal) to I2qZ 1 , and hence in an excited state. 

Even-if J (atom) is not zero for the ground state, some of the magnetic sub- 

states must become excited. For example, if the incident atomic spin is 

l/2 then half the atoms are excited for I2qZ 1 = 1, and all for any larger 

value. -- 

To see what happens when the impact parameter is nonzero, we first 

note that when the pole and nucleus coincide, all three components of J 

commute with the Hamiltonian and hence the states may be characterized as 

eigenstates of 2.2 with eigenvalue /J(Jtl) and a 2Jtl degeneracy. Thus the 

atomic spin zero incident atom finds itself in a state of degeneracy of at least 

(typically, precisely) j2qZ 1 + i as it passes over the nucleus. In the case of 

nonzero impact parameter it is convenient to use a time dependent coordinate 



system in which the nucleus is on the negative z axis. In that case the 

YB~-instantaneous states are still characterized by the eigenvalues of J 
_ - z’ 

Furthermore, for adiabatic motions transition between states of different 

Jz will be very improbable unless degeneracy or near degeneracy occurs. 

(Note that constant J 
z here means that the atom remains in its ground state. 

This differs from our previous discussion because here J refers to a z 
Z 

axis which has a different direction before and after the collision. ) The 

previous discussion, however, tells us that for small impact parameters 

the spin zero incoming state will become nearly degenerate with the . 1 2qZ 1 

partners which it would have at the center. Quasi-adiabatic transfers to 

these states become probable and lead to excitation. Additional degeneracies 

will occur if the z N = 0 state to which the incident ground state connects is 

not the ground state of the % = 0 Hamiltonian. These additional degener - 

acies, which we refer to as off center level crossings, occur for a range of 

impact parameters, and can provide an additional source of excitation. They 

may enhance the excitation cross sections for double strength pole s on He, and 

they are-expected to be important for the heavier noble gas atoms. For non- 

zero incident spin the situation is similar but different magnetic substates 

must be treated separately as they connect with different z 
N 

= 0 states, and 

the degree of degeneracy of the zN =O state varies with magnetic substate. 

With the above picture in mind, a general strategy for calculating 

excitation cross sections may be described. 

(1) The zN = 0 low lying energy level system must be established. 

This is a relatively simple task for one and two electron atoms. A 
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I , 

substantial effort would be involved to do it reliably for such things as Ne 

--~&id A. Connections between these states and the states at _z~ = f 03 can be 

established by assuming that states having the same eigenvalues of J z do 

not cross. These connections are sufficient to establish whether or not there 

are off center crossings and to determine which states will be excited. 

(2) Excitation transitions via the central multiplet can be calculated 

by means of a simple extension of the Landau-Zener theory. To obtain 

quantitative results for a given distance of closest approach, and velocity at 

that distance, one requires only a knowledge of the central multiplet splitting 

which occurs at distances of that order. We assume here that these transi- 

tions are probable only if the splitting is small, and hence linear in the 

separation. It can therefore be obtained by applying first order perturbation 

theory to the central multiplet, provided a sufficiently accurate form for the 

wave function of the central multiplet can be obtained. 

(3) Excitation via off center crossings are significant only if 

AJz = f 1 for the crossings, a circumstance which has, among the cases we 

have stuztied, has occurred only for double strength poles on He. Such crossings 

are also expected to occur in more complex systems such as Ne and A. They 

are most likely to lead to transitions when the distance of closest approach is 

equal to the crossing distance. Hence the determination of this distance and 

the wave function is needed, as well as an appropriate treatment of the differ- 

ential equation which couples the states. 

(4) Since we are treating the orbit of the incoming atom classically, 

we can use the dependence of the energy level on z 
N 

to determine an 
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effective potential between the atom and the pole. For excitation via the 

~-~- 
central multiplet , one is primarily interested in relating the distance of _ - 

closest approach and the atomic velocity at that distance to the velocity and 

impact parameter at z = - m . 
N 

This can be determined to a good approxima- 

tion from the information already determined in (1) and (2), and together with 

(1) and (2) provides a practical procedure for determining the excitation 

cross sections. More detailed information about the energy as a function 

of z N 
is likely to be required to discuss excitation via off center crossings. _ 

The general procedure described above will be illustrated and further 

explained in the applications to be described in subsequent sections. Before 

doing so, however, we explain the A J = f 1 selection rule for off center 
Z 

crossings. We first imagine the eigenvalues and wave functions of the 

Hamiltonian with the nucleus on the negative z axis to be known. The states 

are also eigenstates Jz , and as mentioned before, states of the same J 
Z 

will not cross so that a unique energy E (z 
n N 

) can be defined for each state n. 

We next consider the case of the nucleus moving in some orbit in the x = 0 

plane, and define a primed coordinate system whose x ’ = 0 plane coincides 

with the x =0 plane (i. e. x/=x) and whose z axis points from the pole to 

the nucleus. The Hamiltonian in these primed coordinates has the same form 

as (2. 1) with nuclear coordinate r ’ = +,J (‘9 ‘, -zN)’ In these variables the 

Hamiltonian has an explicit time dependence due to the variation of zN with 

time-and an implicit time dependence due to the time dependence of y ’ and 

Z’ with reference to a fixed y, z. A similar remark applies to the wave func- 

tion. Now write t# = c Cm(t) $,C; ’ , zN) e 
-i / En dt 

, and insert in the time 
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dependent Schroedinger equation to obtain6 

dC 
n -= - 

dt 
(+n, ‘Ty) e-iI(‘m-En)dt Cm (2.5) 

The quasi adiabatic approximation? consists of restricting the values of n, m 

to refer to the pair of levels which are crossing. With the natural choice of 

phase (4~ n, d+,/dt) always vanishes so that the sun in (2.5) reduces to a 

single term, and we have a pair of coupled equations for C and C 
n m’ 

Next we observe that 

d+ m -= z* 9’ , A‘ 
dt -i-L -z 

ZN x 

w’here 

Z 

L’ = 
X c 2: x p’ l ;’ 

j J &J 

Now (\cI n, dllm/dzN) vanishes unless AJ; = 0, which never holds for cross- 

ing states, while ($n , Lx +m) vanishes unless AJk = f 1. The selection 

rule for&f center crossings is thus explained. 

III. THEHYDROGENATOM 

The simplest illustration of the preceding discussion is provided by 

the hydrogen atom. - For notational simplicity, we assume the pole strength 

parameter q to be positive, and, of course, Z = 1. 

a) The energy levels at z N = 0, where the pole and charge coincide, 

is given by: E = Ry/n *2 where n* =l+nr+ia, J=q-l/2, 

q + 112, . . . and a linearly independent set with n*= nr + 
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J = q t l/2, q t 3/2,. . . . In both cases, n = 0, 1,. . . is the number of 
r 

--~- 
radial nodes. Since for large J _ - 

J (J t l/2)2 - q2 NN Jt5-z 
2Jtl 

and thus n 
:; 

depends primarily upon n r t J, the pattern of J degeneracy 

and multiplet structure is similar to that of the pole free case. 

The ground state, with E = -Ry, J = q - l/2; and the first excited 

state, with E = -Ry/(Zq t 1), J = q t l/2 are the two zN = 0 states which 

connect to the ground state at z 
N 

= - OD , and correspond to the central 

multiplets referred to in section II. The state with Jz (atom) = - l/2 at 

‘N = - 0) has J = q - 
Z 

112, If the collision is at zero impact parameter, it 

connects to the lowest state with Jz (atom) = 2q - l/2 at z 
N 

= t a. For 

9 = l/2 this is simply the t l/2 component of the ground state and no excita- 

tion is involved. For larger q excitation must occur. For collisions in 

which the impact parameter is nonzero but sufficiently small, the 2q com- 

ponents of the ground state never actually cross but come sufficiently close 

together to allow quasi adiabatic transfer to occur among them, leading to a 

distribution of excited final states with 2q - l/2 2 Jz (atom) 2 3/2. The 

state with Jz (atom) = +1/2 at z 
N= -a3 has J 

Z 
= q t l/2 and hence must 

connect to the J = q t l/2 state. Thus as zN varies from - 03 to zero, its - 

energy increases from -Ry to -Ry/(2q t 1). At the same time there are 

2q- r states which descend from z = - o) 
N excited states to the z N = 0 ground 

state with energy -Ry and hence ex@erience off center crossings with the 

J 
Z 

= q t l/2 state. These off center crossings are with states having 
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‘. q - 3/2 2 Jz 2 -(q - l/2). Thus a transfer to any of these states involves 

~-~- 
A Jz 2 2, and hence do not occur in the quasi- adiabatic regKme. Hence we 

confine our attention to excitation via the central multiplet. 

In order to discuss excitation via the central multiplet, we first 

write the Hamiltonian as 

H = Ho t He 

where 

Ho = (p-eA)2 q P* ’ e2 
2m -2,-r-- r r 

2 
He =+$.r 

-N r 

(3. 1) 

(3.2) 

We are assuming the pole to be fixed at the origin and the distance rN of 

the proton from the origin to be sufficiently small to allow us to represent 

the change in the electrostatic potential by the electric dipole approximation. 9 

Furthermore, we write 

-. 
5N 

=vtz^tb2; 
0 0 (3.3) 

where b 0 
is the distance of closest approach and v 

0 
is the velocity of the 

nucleus when it is at that distance. Thus we are neglecting orbit curvature 

and velocity variation near the point of closest approach. Degenerate first - 

order perturbation theory applied to the subspace formed by the central 

multiplet can be written 

id9= 
dt y hot Jz + b. ;NJ 
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where 

Y= - _ - 

2 - 4) /r2) (3.5) 

h-i (3.4) 4J is a 2Jtl component column matrix whose components are the 

amplitudes of the Jz eigenstates, and Jz and Jx are angular momentum 

matrices in the standard J representation. 

Setting 

(3.6) 

we obtain 

. 
iC YbO 

M 
= yvOtMCM $2 CM+1 (J-M)(JtMtl) SCM 1 &JtM)(J-Mtl) 

-J<M<J (3.7) -. 

The Ansatz 

(2J) ! 
3 

l/2 
CM = 

(J-M) ! (JtM) ! 
uJtM VJ-M 

solves these equations provided 

c= 1. -pyv tu 
1 

0 - xi ybOv 

- - 1 1 
v- -i yvOt v 2 - Fi ybou 
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(3.10) 



Equations (3.9) and (3. 10) are equivalent to Zener’s (eq. 4). 
5 

We seek 

---- 
a solution for which C 

J 
= 1, C 

M 
= 0 (M # J) at t = - 0~. This is obtained 

by solving (3.9) and (3. 10) with u(- =) = 1, v(- a~) = 0. These are just the 

Zener boundary conditions, so that we can adopt his solutions. Since we 

only need the the* t = t ca values, we write 

5 

lu2(+ =I 1 = exp(- nybi/(2vo) 

lv2(+,)l = 1 - lu2(tm)l 

(3. 11) 

(3. 12) - 

which yields at t = t QI 

I2 = f2J) ! -n yb;(Jthl) -rryb; 
J-M 

(J-M) ! (JtM)! exp 2v0 1-exp 2v (3.13 
0 

It will be shown below that the impact parameter b = lb0 and the incoming 

velocity v = v 0 /A, where A is a function of v which we shall determine. 

Assuming this to be the case here, we obtain the partial excitation cross 

sections 

-. 

/ 

2 3 2v 
uM =ll db2 [CM1 = A - 

y\ / 

br e-(JtM)x tl-e-~jJ-M _ (2J)! 
(J-M) ! (JtM) ! 

2v A3 
= y(JtM) ’ 

JzzMr-Jtl (3. 14) 

It should be clear that the above theory of excitation via a central 

multiplet applies to any atom. The quantitative problem in the case of com- 

plex atoms arises in the evaluation of y and h. For the case of hydrogen, 

we find 
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Y = 4al(2qtl) (3.15) 

for the J = q - l/2 state, and 

Y= 4c(q/ 
[ 
(2qt3)(2qtl)2 (2qtl - + -1 2qt1 (3.16) 

for the J = q t l/2 state. Here a is the fine structure constant and in our 

units y is an inverse length squared, so that the units are inverse Bohr 

radii squared. 

To determine X , we assume the motion of the proton may be described - 

classically and that it is determined by studying motion in the potentials 

V = E(q - l/2, zN) and Vt = E(q t l/2, sN) where E(q t l/2, sN) is the 

minimum eigenvalue of the Hamiltonian with r -N held fixed and J with z 

eigenvalue q + l/2. Here J 
Z 

refers to the component of angular momentum 

along an axis directed from the pole to the proton. Since the potential depends 

only dn lsN I , angular momentum is conserved in the motion, yielding 

vb=vb 
0 0’ 

The ratio of v to v. is given by energy conservation. In order 

to obtain a b independent form for 1 

With these assumptions, I= 1 for the 

h = (l - ,,::r:v2)l’2 

t we have assumed V+(bo) = VA (0). 

lower state and 

(3.17) 

for the upper state. Evidently h depends only upon the excitation energy of 

the central multiplet state so that its evaluation for complex atoms depends 

only upon a determination of the excitation energies. 
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The total excitation cross section is thus given 

o-l,2 = (qtl/21 p (1 +++ l ** +$-J) a; , 9’ 112 (3. 18) 

(3.19) 

These last expressions have been written in standard units so that v has been 

replaced by $ = v/c and the Bohr radius factors have been put in explicitly. 

The factors (lt1/2+ . ..) come from the sum over partial cross-sections, 

and in the form written it is assumed that all are above threshold. For 

example, for q=l, o-l,2 has only one term and represents excitation to 

the n =2 level with (v/c) =(a/2),,/3me/mp at threshold. 01,~ has three 

terms, representing excitation to an n = 2 level and two excitations to n = 3 

levels with a sli ghtly higher threshold. For fixed n, h determines the 

threshold-when the energy of the relevant central multiplet exceeds that of the 

final state, that is when 2qtl > n2 . The excitation cross sections increase 

quite rapidly with q , and our approximations lose their validity as cross 

sections become of order 2 
a 

0’ 
As was emphasized in DKMPR, the cross 

section is quite large even for q = l/2 . 
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IV. THE HELIUM ATOM 

-- --- 
The simplest system of practical interest to which our theory applies _ - 

is the helium atom. We obtain results in this section for the q = l/2 and 

q= 1 case. 

(a) The q= l/2 case 

The lowest two hydrogenic states for zN = 0 have j = 0 and 1. Thus 

in the shell model approximation the ground state will be an antisymmetrized 

product of j = 0 and 1 orbitals yielding a ground state of J = 1. This state, _ 

which provides the central multiplet through which transitions occur, has a 

binding energy which we have variationally estimated to be 8.49 eV, so that 

the He atom sees a repulsive barrier of height 16.09 eV. This leads to a 

threshold factor A = (1 - @z/@2)1’2 with PC = 9.29 x 10-5. The excitations 

are to the lowest 
3 

S 
3 

1 
and P 2 states. These occur in the ratio 2: 1 with thresh- 

olds at pX104 = 1. 03 and 1. 06, respectively. Applying eq. (3. 14), the 

excitation cross section is given by (5 = q (1 t l/2). The critical problem 

remaining is the determination of y . 

A-preliminary determination has been made using a product wave 

function whose spin and angle dependence is the same as that of the hydrogenic 

orbitals and whose radial parts take the form 

f. = e 
- uor/a 0 

fl = r 2-1 e d-- - air/a0 2/2- 

i 

-wr/a - 
1-t+ 

0 

0 i 
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.In these expressions, ao, al, t, and w are parameters determined by 
--- -- 9 minimizing the energy subject to the constraint that the-electric and mag- 

netic dipole forms of the perturbation energy give the same result. While 

they are guaranteed to give the same result if the perturbation is computed 

using exact wave functions of the Hamiltonian, they are in general not the 

same for approximate wave functions. The value obtained for y is 4.66 yH 

where y 
H = a/4(4-&)a:. The result reported in DKMPR, 2.35 yH, was 

obtained from the magnetic dipole form, using a cruder wave function, 

namely (4.2) with t set equal to zero. The cruder wave function with the 

electric dipole form yields 3. 53 y H’ While we believe the new value to be 

the more reliable, the results above have convinced us that a more elaborate- 

and systematic approach is desirable. The computational problem is quite 

similar to that involved in computing the fine and hyperfine (He 3 ) structure 

of the helium P states, which has been done to great accuracy, and we are 

in the process of adopting the methods used there 
10 

to this problem. It 

should be possible to assess the accuracy of a given level of approximation 

for the wave function by comparison with the helium hyperfine structure 

results and by comparing its results for the electric and magnetic dipole 

forms of the interaction. For the present, however, we consider our best 

value to be 

= 2.5 x10 
2 2 312 

u -18 ( p/10m4)(l - PC/g ) cm2 
- 

with 8, = 9.29 x~O-~ . 
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(b) The q= 1 case 

The lowest hydrogenic states for iN ; 0 have j = L/2 and 3/2. _ - ~_. 
Thus the shell model ground state is obtained by putting both electrons in the 

ground state, yielding a J = 0 ground state. This state connects with the 

lowest 3P2 state at zN = f Q, . Because the ground state at zN = - oD has 

Jz = 2, the central multiplet which it connects is the J = 2 level formed by the 

(l/2)(3/2) configuration. This configuration also has a J = 1 level and it is 

important to know which of the two lies lower. A simple variational calcula- _ 

tion seems to provide convincing evidence that the J = 1 level is lower by 

about 0.9 eV. There are therefore four off center crossings by the J = 2 
Z 

state as z N varies from -w to zero. The first, which occurs at zN x ao, is 

with the Jz = 0 state which connects the 
3 

P2 state at z N= -a to the J = 0 

ground state at zN =O. There is no quasi adiabatic transfer at this crossing 

because AJ = 2. z The other three crossings are with the Jz = 1, 0, -1 compo- 

nents of the J = 1 central multiplet. The J = 1 crossing, which satisfies the 
Z 

AJ = rt 1 rule, occurs at z 
Z N M 0. 1 a0 and is a potential additional source of 

excitation. More careful examination of the spectrum at small zN (zN w 

0. 5 a0 and less) reveals a more complex situation than we have discussed pre- 

viously. The coupling of the electric dipole perturbation to the inner electron 

is so strong that it breaks the quartet-doublet coupling for z 
N 

L 0.003 a 
0’ 

Since such distances make a negligible contribution to the cross section, one 

can confine one’s attention to the “Pashen-Bach” region in which the inner 

electron has j 12 = l/2 and the- outer electronhas j2z = 3/2. The levels 
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which contribute to the excitation process are just the jz zs -3/2, -l/2, . 

l/2 levels of the outer electron. The electrostatic interaction between 

the inner and outer electrons does, however, reduce the spacing between 

levels for zN ,> 0.08 a0 , with the reversal of level order taking place at 

ZN z 0.08 ao. We have not worked out the details of the excitation process 

for this more complex situation, but it is clear that application of the 

central multiplet theory to this excited electron will yield a lower limit 

for the cross sections. Comparing y values for q = l/2 and q = 1 and using 

(3.16), we see that the q = 1 monopole is at least a factor 2.3 more effective 

than the q = l/2 monopole. This factor will be enhanced not only by the 

electrostatic narrowing of the level separations but also by the fact that 

the screening will be stronger and the fact that there is an additional level. 

The excitations are to 3s1, 3P2, and 3D3 with B x lo4 thresholds at 1.03, 

1.11, and 1.11, respectively. 11 While one might imagine that the threshold 
-. 

factor A3 might be smaller at threshold due to the fact that the central 

barrier is somewhat higher, it is likely that the tighter binding of the 

inner j,s = l/2 electron at small negative zN overcomes this effect. We con- 

clude, therefore,thatHe is a very effective detector for q = 1 monopole and 

it is very likely to be so for higher q's as well. 
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-- - 
As discussed in ref. 1 and by several speakers at this conference, 

the preferred method of detecting the excitation is by collisional ionization 

of the 3Sl states with a doping gas such as CO2 or CH4. All of the higher 

triplet states quickly decay either directly or by cascade to the metastable 

3 
Sl state. 

V, DYON INTERACTIONS WITH HELIUM 

In this section we consider the interaction of a dyon with helium. The 

= dyon is as sumed to have q = l/2 and plus or minus one unit of electric charge. 

Such a charge on a monopole could arise during the production mechanism in 

the early universe or in the case of positive charge by the subsequent capture 

of a proton. The size of the monopole-proton bound state is approximately 

10 fm and is therefore very small compared to atomic dimensions and hence 

will be considered point like. 

The positively and negatively charged dyons need to be considered 

separately, and we first consider the positive charged case. Following the 

discussion of sections II and III, the eigenstates of the dyon-helium atom 

system are first identified at large separation. Apart from the usual states 

of the helium atom, an electron can form bound states with the positively 

charged dyon with energies - +ma,2/(n+p)2 where n = 0, 1, . . . and 

p = Jj(j + 1); j = 0,1,2,. . . being the angular momentum. The ground state 

of the dyon is 13.6 eV below the continuum and thus the dyon will pick up an 

electron while travelling through matter. Metal- surrounding or making up a 

detector would be an ideal source of such electrons, Therefore we need to 
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consider a dyonic atom and a helium atom colliding, i. e. a three electron 

-- - 
system. _ - 

Next, we consider the dyon and helium nucleus on top of one another. 

In doing this, we must ignore for the time being the Coulomb repulsion 

between the dyon and the nucleus. This interaction, which turns out to be 

quite important , will be taken into account later. 

The relevant zN = 0 central multiplet of the three electron system 

2 
is in a (O)(l) configuration formed from the two lowest hydrogenic states 

and because of the Pauli principle, must have J = 1. Because one of the 

electrons is already bound to the dyon (with J = 0) when the collision begins, 

the Jz value which connects to the z 
N= 

- Q) configuration is J = 1. This 
Z 

shows that the ground state z N = 0 central multiplet described above is 

indeed the relevant central multiplet and there are no off center crossings. 

The states which connect to the Jz = 1 and Jz = 0 states of the central 

multiple t when 
TN 

++a are, as discussed in section III, the minimum 

energy Jz = 1 and Jz = 0 states with zN = t CD . One sees by inspection 

that these are states with He in its ground state and with one electron bound 

to the dyon and in excited J = 2 or J = 1 states with excitation energies of 

11. 3 and 6.8 volts, respectively. 

Following the method of section III, we may calculate the transition 

probabilities as a function of distance of closest approach bO (eq. 3. 13). 

Ag@n the interaction parameter y (call it yD here) must be calculated. 

Following the previous calculation for helium, this is performed variationally 
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using the same wave functions as in section IV but with the extra electron 
-- - 

ina j=l, m. 
J 

= 0 monopole harmonic. The parameters- of-the variational 

wave functions are determined so as to minimize the energy subject to the 

constraint that the electric and magnetic dipoles as discussed earlier give 

the same result. The interaction parameter yD is found to be approxi- 

mately 20 times the hydrogen value due mainly to the extra charge (partially 

shielded) at the origin, which comes in as the third power. Thus we find 

yD 
m 1.4 X 10m2/a2 

0’ 

In order to compute the partial cross sections we use eqs. (3. ll), 

(3. 12), and (3. 13). For this case, we obtain 

IC,l” = 2(emr- e-2r) 

ICli2 = e-2r 

where 

r= nvDb;/2B0 = rryD b;/2bg 

We have-used angular momentum conservation of the nuclear orbit in the last 

equality. In- order to compute a cross section, we need to express b. in 

terms of b and i3. This can easily be done taking account of the Coulomb 

repulsion between the dyon and the nucleus, the attractive force of the elec- 

trons, and angular momentum conservation. Thus we have 

(5. 1) 

- 21 - 



where A is the net increase in binding energy of the electrons when the dyon __- - 

and nucleus are separated by distances small compared to a 
0’ 

Here b. 

and b are in units of a 
0 

and A M 180 eV. The cross sections may be 

evaluated by computing 

OM IC;(bo)j bdb 

numerically, where b o is computed from (5. 1). It is convenient to express 

the result as 

a(6.8) = (B/10m4)A1 2.0X10-19cm2 

a(11.5) = (S /10e4) h 2 1.0 X10’19 cm2 

Here 0 (6.8) represents the excitation cross section for the J = 1 excited 

state of the dyon, which has an excitation energy of 6.8 eV. It corresponds 

to J= 1, M =O in (3. 13). Similarly, ~(11.5) corresponds to J= 1, M = 1 

in (3. 13) and represents excitation of the dyon to its J = 2 state with excita- 

tion energy 11.5 eV. The parameters A 1 and A 2 represent threshold 

factors, analogous to the h3 which appears in (3. 14), and are determined by 

the numerical integration described above. Representative values are: 
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p /1o-4 

2 

3 

10 

1 

41 

1.4 x 10 -3 

8.5 x 10 
-2 

.48 

.86 

1. 02 

1. 04 

1. 00 

p /1o-4 

3~.. -- 

8 

10 

20 

1 

n2 

7.1 x10 
-4 

4.4 x10 
-2 

.236 

.48 

.77 

.88 

. 99 

1. 00 

The difference in the behavior of A 1 and A2 arises from the fact that 1 Ct I 

peaks at b. = 0 where the Coulomb suppression is complete, while ICz I 

vanishes at b 
0 

and peaks at a finite value. The fact that A 1 slightly exceeds 

unity is a consequence of the fact that the force becomes attractive at large 

distances. 

The excitation may be detected via the 6.8 eV and 4.5 eV photons 

which would be emitted by the se states. The small cross section, the strong 

Coulomb suppression for 6 < 4 x 10 -4 , and the requirement that one detect 

photons rather than ionization makes He rather unattractive as a detector of 

positively charged dyons. 

For a negatively charged dyon the eigenstates for a widely separated 

dyonand atom are just the eigenstates of the atom. When the dyon and helium 

atom are on top of one another we are trying to bind two electrons to a charge 
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t 

one center with a monopole. This situation has similarities to the cases of 

a hydrogen minus ion which has one bound state with energy -0.75 eV and a 

helium minus ion which does not exist as a bound state. Let us compare the 

dyon of charge one and the hydrogen minus ion. The first electron goes into 

a state with energy -13.6 eV in both cases, whereas the second electron for 

the dyon case goes into a triplet state with energy -6.8 eV (ignoring shielding) 

and into the n = 1 state with energy - 13. 6 eV (ignoring shielding) for hydrogen 

ion. Also the shielding for the dyon case will be larger than for the hydrogen 

ion so that the monopole will be bound less than 0.75 eV and there is probably 

no bound state. The details here are not important as a dyon at a velocity of 

10 
-4 

c can cause transitions of a few tenths of an electron volt. 

Thus the cross section for ionization of helium is just TT times the 

square of the distance at which binding becomes a few tenths of an electron 

volt. This distance is estimated to be of order l/3 ao, giving a cross section 

of 3 x10 
-17 

cm2. Of course, the Coulomb attraction between the dyon and 

the nucleus will enhance this effect by drawing the nucleus towards the dyon. 

The added energy in the electrons due to the reduction in charge near the 

center (<55 eV) is less than the Coulomb attraction between dyon and nucleus 

at a distance of a 
0 and is therefore negligible. The energy loss, neglecting 

the attraction between dyon and nucleus will be of order 100 MeV cm2g -1 , 

This is about 50 times minimum ionizing and thus an uncertainty in our esti- 

mateof the cross section by a factor of 4 or more is not important. Also 

there is no need for a quenching gas like CO2 or CH4 for this case as the dyon 

ionizes the helium atom directly. The threshold for this process is 
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.1.2 x10 
-4 c and there is no reduction in cross section near threshold. 

-~ .-- 
Below threshold, the ionization cross section-probably continues to be high 

but accompanied by capture of the a particle and electron by the dyon. This 

process ultimately leads to a tightly bound u particle dyon system which 

behaves like a positive dyon. 

In summary, helium would be a very efficient detector for negatively 

charged dyons down to a @ of 1.2 x 10 
-4 

, but appears to be much less 

promising as a detector for positively charged dyons. 

Vi. HEAVIER NOBLE GAS ATOMS 

The primary limitation of He as a slow monopole detector is its 

threshold at B = 1.03 X 10 
-4 

. One would prefer to be sensitive at least to 

-4 
0.37 x 10 , the velocity of escape from the earth. Because our arguments 

relied heavily upon the spherical symmetry which is obtained when the 

monopole and nucleus coincide, it is natural to consider heavier noble gas 

atoms. Such atoms are extensively used in proportional counters and are 

not subject to the annoying leakiness of He proportional counters. Assuming 

the threshold to be determined by the excitation energy, which we take to be 

of the order of the ionization energy, one finds (pt = threshold 6 ) 

Ne A Kr Xe - - - - 

104et = 0.48 0. 29 0. 19 0.14 

- 

It is not, however, clear that we have used a proper measure of the 

thr e shold. We recall that the monopole presents a 16 eV central barrier to 
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the impinging He atom, a fact which gives rise to the A3 threshold factor 

--which appears in eq. (3. 14). This barrier ‘provides a threshold factor, _ - 

rather than the principal determinant of the threshold, because it is lower 

than the required excitation energy. We have already noted that the existence 

of a Coulomb barrier in the He-positive dyon problem more than doubles the 

effective threshold. 

In order to assess the barrier height question in a preliminary way, 

we first consider the diamagnetic repulsion which the atom experiences when 

it is far from the monopole. Using experimental values for the diamagetic 

susceptibility, we find for ao/zN << 1, 

E (diamagnetic) = x(aO/zN)4 

with 

He - Ne 4 Kr 2 - 

‘x: W) 1.3 4.8 130 265 423 

While (6. 1) obviously gives a gross overestimate as zN + 0, it should be 

noted (see-fig. 1 of DKMPR) that for He at z =a 
N 0 

it is roughly a factor 

ten too small. While it would be unwarranted to assume ten is a universal 

factor, it does seem very likely that the actual barrier at zN = a0 is 

several times the value given by (6. 1). We further comment that an argon 

atom with 8 = 1.03 X 10 
-4 

, the He threshold, cannot penetrate beyond a 

200 &V barrier height, and on the basis of the above discussion, seems 

unlikely to achieve a z N as small as a 0’ 
It may therefore be out of the 
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range at which quasi adiabatic excitation takes place. If this is the case, 

-- - 
the quasi adiabatic threshold for argon would- be higher than that of He. 

Once g is sufficiently large to allow barrier penetration, it is 

certain that degeneracies and near degeneracies will be encountered, and 

hence quasi adiabatic excitation will take place. The question of the magni- 

tude of y factors, which depend primarily on the extent to which the last 

shell electrons are screened for the state which connects to the ground 

state, is then of crucial importance in determining quantitative cross sec- 

tions. A contribution from off center crossings may also prove to be 

important, and distortions of the multiplet structure of the sort found in 

the q = 1 case for He may further complicate matters. 

In summary then, the probability that the threshold for quasi adiabatic 

excitation can be pushed below 8 = 10 
-4 

by using heavy noble gas atoms 

seems to be low. More work is required both to determine what the threshold 

is and how large the cross sections are. It seems likely, however, that they - 

become satisfactorily large somewhere between S = 10 
-4 -3 

and@=10 . 

VII. CONCLUDING REMARKS 

Despite some quantitative uncertainties about cross section magnitudes, 

it seems certain that He proportional counters will satisfactorily detect mas- 

sive Dirac monopoles of arbitrary charge in the S = 10 -4 -3 
-10 velocity range. 

The threshold increases slowly with magnetic charge but will remain below 

the Ionization limit at 8 = 1. 2 X 10 
-4 

. Such counters will also detect nega- 

tively charged dycns at this threshold. 
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APPENDIX 

Because our use of the magnetic dipole perturbation has received 

-- - 
some criticism, 12 we add some technical comments about-the hydrogen 

energy level problem here. 

Considering the energy as a function of zN , the term linear in z 
N 

near z 
N =0 canbe obtained from either the point electric or point magnetic 

dipole. Here we restrict the perturbation Hamiltonian to terms linear in 

ZN' whichmeans the 6A 
2 

term is omitted in the magnetic dipole case. 

As explained iqfootnote 9, the two forms of the Hamiltonian give the same 

result. 

One might also consider carrying out first order perturbation theory 

with real dipoles, that is two point charges (electric or magnetic) of 

opposite sign separated by a distance z N' In this case, our argument for 

the equivalence of the two cases no longer applies. First order perturbation 

theory for the real electric dipole can be readily carried out, and one finds 

a fractional correction to our point dipole result of order z /a N 0' Higher 

order perturbation theory would, of course, be expected to yield terms of 

similar order. First order perturbation theory for the real magnetic dipole 

case is, however, singular. To be specific, we consider the case in which 

the dipole is aligned along the z axis , with the original magnetic pOle 

displaced from the origin in the positive direction. Then for the J,= 1 state, 

firs order perturbation theory can be carried out, and a fractional cor- 

rection to the point dipole result of order (zN/ao) 
262 is found. 

However, for the J = 0 and J = - 1 cases, the 
Z Z 
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perturbation integrals diverge. If one first performs the radial integrals, 
-- - 

which do converge, but carries out the sm& ZN expansio_n before com- 

pleting the angular integration, one finds that the linear terms agree with 

the point dipole result,but the angular integral for the order (z,/aO) 
2%,/z2 

correction diverges. If the poles are displaced to the negative side, it is 

the Jz = -1 state rather than the Jz = 1 state which is well behaved. (Note 

that the difficulty does not depend upon the choice of string direction, which 

only affects the $I dependence of the states. ) The formal origin of the 

difficulty lies in the structure of the differential equation and has been 

discussed in the context of variational calculations by Tiktopoulos. 
6 

To 

explain the origin physically we first recall that the ordinary spherical 

harmonics \Tanish along the z axis for m 2 0. This vanishing can be under- 

stood as resulting from the effect of the repulsive centrifugal potential 

22 2 
associated with the m /r sin 0 term in the Hamiltonian. In the case of 

monopole harmonics, the magnitude of the centrifugal potential changes as 

one switches from one sign of the z axis to the other, and for the q = l/2 

case, Gy vanish on one side or the other for 1 Jz ) = 1 or 0. Accordingly, 

the wave functions do not vanish for such states along the entire z axis. 

Shifting the position of the pole without changing the states, which is what 

one does when one carries out first order perturbation theory, can shift the _ 

repulsive and singular centrifugal potential into a region where the wave 

function does not vanish, leading to the divergent expectation values described 

above. Thus an attempt to apply first order perturbation theory to a real 

magnetic dipole using numerical integration techniques 
12 

is bound to lead to 
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,unreliable and confusing results. 
-- - 

As a final remark, it may be of interest to mention that we have _ - 

carried out numerical variational calculations for the Jz = * 1 excited 

states and the Jz = 0 ground state all the way from ‘N = -03 to z N 
=-f-m 

using wave functions which guarantee consistency with perturbation theory 

at the 1 zN\ = 0 and infinity limits. (Our wave function for the ground state 

is the same as that used by Tiktopoulos 
6 

and our results agree with his. ) 

These have been done accurately enough to allow us to numerically confirm 

the value of the slope at the origin to 0. 2 percent. The calculations are 

useful because they indicate that the departure from linearity is small, 

linearity being valid within - 5 percent out to a distance 0.5 a0 0 This . 

result supports the approximations we have used in calculating excitation 

pr obabilitie s. Analogous calculations have also been carried out for q = 1. 
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1. 

2. 

3. 

4. 

5. 

6. 

7. We are using the phrase “quasi adiabatic” to refer to a situation 
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